Муниципальное казённое общеобразовательное учреждение «Ключиковская средняя общеобразовательная школа»

Введено в действие Приказом № 212 от 01.09.2020 г.

Рабочая программа

Предметная область: предметы и курсы по выбору

Наименование учебного предмета (курса): Прикладная механика

Класс: 10

Уровень общего образования: среднее общее образование Срок реализации программы: 2020-2021 учебный год

Разработчик: Чистова Н.П., учитель математики и физики, 1 кв. к.

Планируемые результаты освоения курса «Прикладная механика»

Личностными результатами обучения физики в средней (полной) школе являются:

- готовность и способность к саморазвитию и личностному самоопределению;
- сформированность мотивации к обучению и целенаправленной познавательной деятельности, системы значимых социальных и межличностных отношений, ценностносмысловых установок, отражающих личностные и гражданские позиции в деятельности, правосознание, экологическую культуру;
- способность ставить цели и строить жизненные планы;
- способность к осознанию российской гражданской идентичности в поликультурном социуме.

Метапредметными результатами обучения физике в средней школе являются:

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование и т. д.) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- умение генерировать идеи и определять средства, необходимые для их реализации;
- умение самостоятельно приобретать новые знания, организовывать свою учебную деятельность, ставить цели, планировать, осуществлять самоконтроль и оценку результатов своей деятельности, предвидеть возможные результаты своей деятельности;
- умение устанавливать различия между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, выдвигать гипотезы для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разрабатывать теоретические модели процессов или явлений;
- умение воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его; выражать свои мысли и приобретать способность выслушивать собеседника, понимать его точку зрения, признавать право другого человека на свое мнение; развитие монологической и диалогической речи;
- осваивание приемов действия в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- умение работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию;
- умение определять цели и задачи деятельности, выбирать средства реализации целей и применять их на практике; использование различных источников для получения физической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата.

В результате изучения элективного курса на уровне среднего общего образования у учащихся будут сформированы следующие предметные результаты. Обучающийся научится:

- на конкретных примерах описывать физические принципы, определяющие устройство и формы проявления материального мира, и понимать эти принципы;
- раскрывать на примерах роль физики и механики в формировании современной научной картины мира и в практической деятельности человека, взаимосвязь между физикой и другими естественными науками;
- критически оценивать и интерпретировать физическую и техническую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-

популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;

- устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе физических знаний.

Обучающийся получит возможность научиться:

- формулировать цель исследования, выдвигать и проверять экспериментально собственные гипотезы о механических особенностях работы устройств той или иной конфигурации и конструкции;
- самостоятельно планировать и проводить эксперименты с соблюдением правил безопасной работы с лабораторным оборудованием;
- интерпретировать данные, полученные в результате проведения технического эксперимента;
- прогнозировать возможность создания и функционирования тех или иных технических механизмов или устройств.

Содержание курса

Тема 1. Физические принципы прикладной механики (2 ч)

Условия равновесия тел, статика, принцип возможных перемещений, кинематические связи.

Примеры и задачи.

Тема 2. Механизмы, дающие выигрыш в силе (6 ч)

Простые механизмы — наклонная плоскость, клин, рычаг, блок, ворот.

Физические законы и технические принципы, приводящие к выигрышу в силе.

История развития простых механизмов и примеры реализации принципов простых механизмов в современных устройствах и инструментах.

Задачи и задания.

Практическая работа «Проектирование, изготовление и испытание сложного простого механизма (например, сложного блока с выигрышем в силе в 5, 8 или 16 раз)».

Теоретическое задание «Разработка простого механизма, дающего выигрыш в силе в нестандартное число раз (например, в 7 раз или в р раз), или теоретическое обоснование невозможности создания такого механизма на базе изученных законов механики».

Тема 3. Простые механизмы, преобразующие движение (винт, шестерни, механизмы передачи вращательного и поступательного движения) (6 ч)

Простые механизмы, преобразующие движение (винт, шестерни, цилиндрическая передача, коническая передача, червячная передача, простейшие шарниры (как пример), коленчатый вал и др.).

Технические принципы, обеспечивающие преобразование поступательного и вращательного движения с заданными входными и выходными параметрами. Значение кинематической связи.

История развития механизмов преобразования движения и примеры их применения в современных устройствах и инструментах.

Задачи и задания.

Практическая работа «Проектирование, изготовление и испытание механизма преобразования движения с заданными параметрами».

Тема 4. Сложные механизмы, преобразующие движение

(шарниры — простые и великие) (12 ч)

Карданный шарнир, дифференциал, шарнир Липкина–Посселье, шарниры Чебышева. Шарнир равных угловых скоростей.

Теоретические основы и технические принципы, обеспечивающие преобразование поступательного и вращательного движения с заданными входными и выходными

параметрами. Роль кинематических связей при преобразовании движения в трёхмерном пространстве.

История развития механизмов преобразования движения и примеры их применения в современных устройствах и инструментах.

Задачи и задания.

Практическая работа «Проектирование и компьютерное моделирование, изготовление достаточно сложного механизма преобразования движения с заданными параметрами».

Тема 5. Механизмы, использующие быстрое вращательное движение (гироскопы) (6 ч)

Механизмы, использующие быстрое вращательное движение. Их роль технике. Велосипед и мотоцикл. Гироскопы. Гироаккумуляторы энергии.

Теоретические основы и технические принципы использования быстрого вращательного движения в технических устройствах.

История развития гиромеханизмов и примеры их применения в современных устройствах.

Задачи и задания.

Практическая работа «Изучение гироскопа».

Тема 6. Гидротехнические механизмы и устройства (6 ч)

Гидромеханика. Водяное колесо, сифон и гидравлический пресс. Теоретические основы и технические принципы, работа гидромеханических устройств.

История развития гидромеханики. Сифон Герона. Законы Архимеда, водопровод, акведуки. История водопровода и канализации.

Применение гидромеханики в современных устройствах и инструментах.

Задачи и задания.

Практическая работа «Проектирование, изготовление и испыта-ние простого гидромеханического устройства, например сифонного механизма подачи воды».

Тема 7. Механизмы, преобразующие энергию. Часть 1 (6 ч)

Механизмы, преобразующие тепловую энергию в механическую. Тепловые машины.

Теоретические основы и технические принципы, обеспечивающие преобразование тепловой энергии в механическую. Принципы работы тепловых машин. Двигатели Карно. История развития тепловых машин. Первые тепловые машины и их применение. Паровые машины. Двигатели внутреннего сгорания.

Современные тепловые машины и двигатели.

Задачи и задания.

Практическая работа «Изучение двигателя Стирлинга (или простейшего двигателя внутреннего сгорания)».

Тема 8. Механизмы, преобразующие энергию. Часть 2 (6 ч) Электромагнитные генераторы и электродвигатели.

Теоретические основы и технические принципы, обеспечивающие преобразование тепловой и механической энергии в электромагнитную и наоборот. Принцип обратимости. История развития электрогенераторов, электродвигателей и систем передачи электрической энергии на большие расстояния. «Война токов». Залачи и залания.

простого

униполярного электродвигателя».

Тема 9. Сопротивление материалов и строительная механика (6 ч)

Прикладная механика в строительстве. Строительные материалы и конструкции. Их параметры и свойства.

Теоретические основы физики прочности. Принципы расчёта параметров сопротивления материалов. Принцип арки.

История развития строительной механики. Кирпич. Мосты и акведуки. Дороги. Задачи и задания.

Практическая работа «Конструирование, изготовление и испытание

Практическая работа «Проектирование, расчёт прочностных характеристик, построение и испытание арки с заданными строительными параметрами».

Тема 10. Механические колебания и их использование (6 ч)

Механические колебания как эталон времени. Теоретические основы физики колебаний. История развития механизмов измерения времени. Анкерный механизм. Часы механические и электромеханические. Современные устройства точного измерения времени.

Задачи и задания.

Практическая работа «Изучение и математическое моделирование колебаний маятника на сложном подвесе».

Тема 11. Научно-практическая конференция (4 ч)

Обсуждение практических работ исследовательского характера и рефератов на тему о перспективах развития прикладной механики в будущем. Какие механизмы люди будут использовать через 100, 200 или 300 лет. Подведение итогов (круглый стол).

Тематическое планирование 10 класс

3.0	
№	Тема урока
	Физические принципы прикладной механики (2 ч)
1	Условия равновесия тел, статика, принцип возможных перемещений,
	кинематические связи
2	Решение задач
	Тема 2. Механизмы, дающие выигрыш в силе (6 ч)
3	Простые механизмы — наклонная плоскость, клин
4	Простые механизмы — рычаг, блок, ворот
5	Решение задач
6	Физические законы и технические принципы, приводящие к выигрышу в силе
7	История развития простых механизмов и примеры реализации принципов
	простых механизмов в современных устройствах и инструментах
8	Практическая работа «Проектирование, изготовление и испытание сложного
	простого механизма (например, сложного блока с выигрышем в силе в 5, 8 или 16
	pa3)»
	Простые механизмы, преобразующие движение (винт, шестерни, механизмы
	передачи вращательного и поступательного движения) (6 ч)
9	Простые механизмы, преобразующие движение (винт, шестерни, цилиндрическая
	передача, коническая передача, червячная передача).
10	Простые механизмы, преобразующие движение (простейшие шарниры (как
	пример), коленчатый вал).
11	Технические принципы, обеспечивающие преобразование поступательного и
	вращательного движения с заданными входными и выходными параметрами.
	Значение кинематической связи.
12	История развития механизмов преобразования движения и примеры их
	применения в современных устройствах и инструментах
13	Решение задач
14	Практическая работа «Проектирование, изготовление и испытание механизма
	преобразования движения с заданными параметрами»
	Сложные механизмы, преобразующие движение (шарниры — простые и великие)
	(12 ч)
15	Карданный шарнир
16	Дифференциал
17	Шарнир Липкина-Посселье

18	Решение задач
19	Шарниры Чебышева
20	Шарнир равных угловых скоростей
21	Решение задач
22	Теоретические основы и технические принципы, обеспечивающие преобразование поступательного и вращательного движения с заданными входными и выходными параметрами
23	Роль кинематических связей при преобразовании движения в трёхмерном пространстве
24	История развития механизмов преобразования движения и примеры их применения в современных устройствах и инструментах
25	Решение задач
26	Практическая работа «Проектирование и компьютерное моделирование, изготовление достаточно сложного механизма преобразования движения с заданными параметрами»
	Механизмы, использующие быстрое вращательное движение (гироскопы) (6 ч)
27	Механизмы, использующие быстрое вращательное движение. Их роль технике
28	Велосипед и мотоцикл. Гироскопы. Гироаккумуляторы энергии
29	Теоретические основы и технические принципы использования быстрого вращательного движения в технических устройствах
30	История развития гиромеханизмов и примеры их применения в современных устройствах
31	Решение задач
32	Практическая работа «Изучение гироскопа»
	Научно-практическая конференция (2 ч)
33	Научно-практическая конференция
34	Научно-практическая конференция
35	Итоговое занятие